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Abstract. By invoking the existence of a general O(2) symmetry, a minimal left–right symmetric model
based on the gauge group G = SU(2)L ⊗ SU(2)R ⊗ U(1)B−L is shown to require the existence of only two
physical Higgs bosons. The lighter Higgs is predicted to have a small mass which could be evaluated by
standard perturbation theory. The fermionic mass matrices are recovered by insertion of ad hoc fermion–
Higgs interactions. The model is shown to be undistinguishable from the standard model at the currently
reachable energies.

Left–right (LR) symmetric extensions of the standard
model (SM) have been extensively studied since 1974 when
they were first discussed [1–3]. Some years ago the quanti-
zation and renormalization have been worked out by Duka
et al. [4], who also gave an extended literature on the sub-
ject. More recently radiative corrections have been consid-
ered in order to discuss the phenomenological predictions
of such models [5].

LR models are based on the gauge group G, where

G = SU(2)L ⊗ SU(2)R ⊗ U(1)B−L, (1)

and have the remarkable merit of predicting a phe-
nomenology which is basically undistinguishable from the
standard model at the currently reachable energies. How-
ever, for the same reason the lack of any experimental ev-
idence makes the choice of the symmetry group – namely
LR versus standard – a purely aesthetic matter. From this
point of view LR models have quite some advantages, as
the observed LR asymmetry is explained by low energy
breaking of the symmetry and does not require to be in-
serted by hand as it is the case for the standard model.
Moreover the U(1) generator gets a physical interpretation
as the B − L number. On the other hand in their “mini-
mal” version LR symmetric models require the existence
of many new particles: the most disturbing ones are the
ten physical Higgs particles required (four charged and six
real neutral bosons) to be compared with only one physi-
cal Higgs boson predicted by the SM.

In this paper it is shown that the proliferation of Higgs
particles is not necessary and can be avoided in a truly
minimal version of the LR symmetric model.

Any viable gauge model for electro-weak interactions
must give an answer to two quite different problems:
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(i) the breaking of symmetry – from the full gauge group to
the electro-magnetic abelian group U(1)em – which gives
a mass to the gauge bosons and thus explains the known
structure of the weak interactions;
(ii) the mass matrices for fermions.

Even in the standard model these two problems are
addressed in different independent steps, and with a dif-
ferent degree of success. In fact, while the first problem is
given a full and satisfactory solution, the mass generation
for fermions is only described by the ad hoc insertion of
a handful of coupling parameters. Thus the mass hierar-
chy problem has not found any genuine solution. More-
over this second aspect is strongly related to the nature
of the Higgs sector which is still unexplored from the ex-
perimental point of view. In LR models, the proliferation
of Higgs particles is a direct consequence of the very com-
plicated structure of the Higgs sector, required in order to
explain the spontaneous breaking of LR symmetry. Unless
the Higgs bosons are composite objects, as predicted by
top [6] or neutrino [7] condensation models, the prospect
of such a large number of elementary fields is not very
attractive.

By invoking the existence of a general symmetry, we
show that a truly minimal LR model, based on the gauge
group G, only requires the existence of two physical neu-
tral scalar Higgs bosons in order to address point (i). Point
(ii) remains open to several quite different descriptions
which are compatible with the proposed symmetry break-
ing path. The ad hoc insertion of free coupling parameters
between fermions and the two Higgs fields still allows for
a full description of the fermion mass matrices, at the
extra cost of inserting non-renormalizable terms in the la-
grangian. Of course this choice would not give any real
answer to the mass hierarchy problem, which remains un-
solved.



556 F. Siringo: Symmetry breaking of the symmetric left–right model without a scalar bidoublet

The LR symmetric lagrangian is the sum of a fermionic
term Lf , a Yang–Mills term for the gauge bosons LYM, a
Higgs term LH and eventually the Higgs–fermions inter-
action term Lint.

In order to deal with point (i) above, we need to specify
LH:

LH = −1
2
|Dµ

LχL|2 − 1
2
|Dµ

RχR|2 + V (χL, χR), (2)

where the covariant derivative Dµ
a is defined according to

Dµ
a =

(
∂µ − igaAµ

aTa + ig̃BµY

2

)
, a = L,R.

(3)
TL, TR and Y are the generators of SU(2)L, SU(2)R and
U(1)B−L respectively, with couplings gL = gR = g and g̃.
As usual the electric charge is given by Q = TL3 + TR3 +
Y/2. The Higgs fields χa are doublets

χL =
(
χ+

L

χ0
L

)
, χR =

(
χ+

R

χ0
R

)
, (4)

with the transformation properties

χL ≡ (2, 1, 1), χR ≡ (1, 2, 1). (5)

A standard LYM is considered for the seven gauge fields
Aµ

L, Aµ
R and Bµ. Fermions are described by doublets of

spinors ψL, ψR with the transformation properties

ψL ≡ (2, 1, B − L), ψR ≡ (1, 2, B − L). (6)

Their lagrangian term Lf is as follows:

Lf = −ψ̄LγµD
µ
LψL − ψ̄RγµD

µ
RψR. (7)

The lagrangian L = Lf +LYM +LH is fully symmetric
for LR exchange. Moreover we notice that for a vanish-
ing coupling g, g̃ → 0, and neglecting the contribution of
V (χL, χR), the free part of Lf +LH has a global O(2) sym-
metry, as it is invariant under rotations in the LR plane.
We may define doublets of doublets according to

Φ =
(
χL

χR

)
, Ψ =

(
ψL

ψR

)
, (8)

and the free lagrangian reads

Lf + LH = −|∂µΦ|2 − Ψ̄γµ∂µΨ, (9)

which is invariant under Φ → Φ′ = R(θ)Φ and Ψ → Ψ ′ =
R(θ)Ψ , where R(θ) ∈ O(2) is the 2 × 2 rotation matrix
of angle θ. While the physical meaning of this continu-
ous global symmetry is not evident, we may assume that
the full lagrangian should be O(2) invariant in the limit
g, g̃ → 0 of no gauge coupling. According to such an as-
sumption the Higgs potential V (χL, χR) should be invari-
ant under rotations in the LR plane. This symmetry makes
the potential V a function of the rotational invariant field
ρ:

ρ2 = χ2
L + χ2

R, (10)

and this is going to hold even in the presence of finite
gauge interactions which break the O(2) symmetry. Pro-
vided that V (ρ) has a minimum for a non-zero expectation
value of ρ, according to (10) the minimum is going to be
on a circle in the χL,χR plane. For the real vacuum, the
actual value of θ is only determined by chance. Thus, the
existence of the global O(2) symmetry would give a natu-
ral path towards the LR symmetry breaking.

If the gauge interactions are allowed to break the
O(2) symmetry then infinite renormalizations of the O(2)
breaking terms would spoil the symmetry of the scalar po-
tential. Thus we must assume that the quartic terms in
the potential are set to zero by some unspecified physics
in the high energy theory. It is evident that this assump-
tion turns out to be the weak point of the model: there
is no other way to justify the existence of the global O(2)
symmetry. However, the main message of the present pa-
per is that the existence of this symmetry is the only way
to recover the left–right symmetry breaking from a fully
symmetric lagrangian and without any Higgs bidoublet.
Models with a soft breaking of the lagrangian symmetry
have been proposed since 1975 [8], but they cannot be
regarded as truly spontaneous symmetry breaking mech-
anisms as the symmetry is broken by insertion of “ad
hoc” mass terms in the lagrangian. In other words these
models do not provide a way to understand why the real
vacuum is not left–right symmetric unless we accept that
the lagrangian is not symmetric. As the great appeal of
left–right models is due to the full left–right symmetry
of the lagrangian, it would not be desirable to spoil this
symmetry even with mass terms. Thus the existence of a
global O(2) symmetry seems to be the only way to avoid
any Higgs bidoublet with a fully left–right symmetric la-
grangian.

The physical content of the theory becomes more ev-
ident in unitarity gauge. Accordingly we set χ+

a = 0 and
choose χ0

a real. The covariant derivative of χa reads

Dµχa =
( −i g√

2
W−

a
µ
χ0

a(
i g
2Aa

µ
3 + i g̃

2B
µ + ∂µ

)
χ0

a

)
, (11)

where W±
a = 1√

2
(Aa1 ± iAa2). For a non-zero expectation

value of ρ we get the following vacuum expectation values
for the Higgs fields:

〈χ0
L〉 = v = ρ sin θ; 〈χ0

R〉 = w = ρ cos θ, (12)

and we assume that by chance θ is very small (v << w).
Insertion of (11) in the lagrangian (2) yields the mass ma-
trix for the gauge bosons.

The charged W±
L and W±

R are decoupled with masses

MW (L) =
gv

2
, MW (R) =

gw

2
. (13)

Thus the angle θ determines the mass ratio tan θ =
MW (L)/MW (R). For the neutral gauge bosons Bµ, AL

µ
3

and AR
µ
3 we get the mass matrix M2

M2 =
1
4

(
g̃2(v2 + w2) gg̃v2 gg̃w2

gg̃v2 g2v2 0
gg̃w2 0 g2w2

)
. (14)
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There is a vanishing eigenvalue for the electromagnetic
unbroken U(1) eigenvector

Aµ =
e

g
AL

µ
3 +

e

g
AR

µ
3 − e

g̃
Bµ, (15)

while the non-vanishing eigenvalues are given by a small
value,

M2
Z =

g2v2(g2 + 2g̃2)
g2 + g̃2 + O(v2/w2), (16)

and a large one,

M2
Z′ =

(
M2

W (L) +M2
W (R)

)
(1 + g̃2/g2) −M2

Z . (17)

The corresponding eigenvectors are

(
A
Z
Z ′

)
=




−e/g̃ e/g e/g

g/DL
g̃ cos2 θL

DL sin2 θL

g̃ cos2 θL

DL(tan2 θ − cos2 θL)

g/DR
g̃ cos2 θR

DR(tan−2 θ − cos2 θR)
g̃ cos2 θR

DR sin2 θR




×
(

B
A3L
A3R

)
, (18)

where

DL =
√
g2 + g̃2

(
tan−4 θL + cos4 θL/(tan2 θ − cos2 θL)2

)
,

(19)

DR =
√
g2 + g̃2

(
tan−4 θR + cos4 θR/(tan−2 θ − cos2 θR)2

)
,

(20)

and the Weinberg angles θL and θR are defined according
to cos θL = MW (L)/MZ , cos θR = MW (R)/MZ′ .

The transformation matrix (18) can be inverted, and
neglecting contributions of order O(v2/w2) and the heavy
Z ′ we find

Bµ = − e

g̃
Aµ +

g

g̃
tan θL sin θLZµ + . . . , (21)

A3
µ
L =

e

g
Aµ + cos θLZµ + . . . , (22)

A3
µ
R =

e

g
Aµ − tan θL sin θLZµ + . . . , (23)

while the normalization condition ensures that e2 =
g2 sin2 θL.

Thus the SM phenomenology is recovered with θL play-
ing the role of the standard Weinberg angle1, and v de-
termined by the Fermi constant. In fact, insertion of (21),

1 That LR theories predict the SM phenomenology has been
shown on very general grounds by Senjanovic [9] who employed
the method of Georgi and Weinberg [10].

(22) and (23) in the fermion lagrangian (7) yields the stan-
dard model effective lagrangian up to O(v2/w2) correc-
tions. Of course, at low energy, all the effects of the heavy
Z ′ and W±

R are suppressed.
The Higgs sector is very simple, as we only have two

neutral scalar fields χ0
L, χ0

R. In the limit g, g̃ → 0 the mass
matrix has a vanishing eigenvalue in the point χ0

L = v,
χ0

R = w. Thus the physical fields are a radial Higgs
ρ =

√
v2 + w2 and a tangential zero-mass Goldstone bo-

son. For the radial field the mass is determined by the
unknown potential V (ρ) and, as for the SM, there are
only loose bounds on its value. The cost of LR symmetry
breaking seems to be the occurrence of a zero-mass Higgs
field; however, for finite gauge couplings g, g̃ �= 0 the O(2)
symmetry is not an exact symmetry of the full model, and
the tangential “would be” Goldestone boson is expected
to acquire a mass.

Until now we have not addressed point (ii) (i.e. the
origin of fermion mass matrices), and we avoided to dis-
cuss any Higgs–fermion interaction. In the SM the mass of
fermions is recovered by insertion of ad hoc interactions.
Taking aside composite Higgs theories, which would be
compatible with the present LR minimal model, insertion
of a fermion–Higgs interaction still remains the simplest
way to predict fermion mass matrices. In order to avoid
the proliferation of Higgs fields we may build up the four
composite matrices χaχ

†
b with a, b = L,R. For each set

of ab labels χaχ
†
b is a matrix since both χa and χb are

doublets according to their definition (4). Moreover, the
O(2) symmetry requires that we regard ΦΦ† ≡ χaχ

†
b as

a matrix of matrices. An O(2) invariant interaction term
may be written as Ψ̄ΦΦ†Ψ . We may also define the adjoint
doublets

χ̃a =
(

(χ0
a)�

(−χ+
a )�

)
, Φ̃ =

(
χ̃L

χ̃R

)
, (24)

that have the same transformation properties as χa and Φ
respectively. Thus the more general interaction, invariant
under G and O(2) transformations, reads

Lint = −α1Ψ̄ΦΦ
†Ψ − α2Ψ̄ Φ̃Φ̃

†Ψ, (25)

where the couplings α1, α2 change for different fermionic
doublets. If we require exact conservation of the lep-
tonic number, then no Majorana mass term is allowed,
and neutrinos are regarded as standard Dirac fermions.
The interaction term may be simplified by noticing that
ψ̄LψL = ψ̄RψR = 0. Thus we find

Lint = −α1ψ̄LχLχ
†
RψR − α2ψ̄Lχ̃Lχ̃

†
RψR + h.c. (26)

Then in unitarity gauge, by inserting

χa =
(

0
χ0

a

)
, χ̃a =

(
χ0

a

0

)
, ψa =

(
ua

da

)
, (27)

the interaction term reads

Lint = −χ0
Lχ

0
R
(
α1d̄LdR + α2ūLuR

)
+ h.c. (28)
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At low energy the vacuum expectation values of the Higgs
fields give mass terms to the fermions. Up and down com-
ponents of the fermionic doublets get different masses mu,
md:

mu = α2vw, md = α1vw. (29)

The generalization to the case of three fermionic flavors
is straightforward, with the couplings α1, α2 replaced by
matrices.

The price we pay is the insertion of a non-
renormalizable term in the lagrangian. However the cou-
plings αi are very small:

αi =
(

g2

4MW (R)

)(
mi

MW (L)

)
(30)

and scale as 1/MW (R). The large mass of the top quark
suggests that the cut-off scale cannot be much bigger than
MW (R), and thus the effective theory makes sense only for
energies a little higher than MW (R). However, if θ is very
small, that energy scale is considerably higher than any
known mass. A full analysis of the phenomenology of the
non-renormalizable interactions is beyond the aims of the
present paper. On the other hand, we stress that the exis-
tence of such non-renormalizable terms in the lagrangian
was not required in order to address point (i) (symmetry
breaking and the known structure of weak interactions),
which is the main aim of this paper. Inclusion of ad hoc
terms like Lint is just the simplest way to reproduce the
fermion mass matrices.

An open question is the mass of the “would be” tan-
gential Goldstone boson. In principle its value could be
evaluated by standard perturbation theory. In a simpli-
fied picture we may assume that zero-point energies would
contribute2 a finite effective potential term Vb(M) =
3/(64π2)M4 ln(M2/µ2

b) for any vector boson field with
mass M , and a term Vf (m) = −4/(64π2)m4 ln(m2/µ2

f )
for any fermionic field with mass m. The energies µb, µf

depend on the cut-off scale and can be regarded as free pa-
rameters. According to (12), (13) and (29), summing up
over all the fermionic masses mj = αjvw = αjρ

2 sin θ cos θ
and over all the bosonic masses, and assuming MZ ≈
MW (L) = vg/2, MZ′ ≈ MW (R) = gw/2, we obtain the
following effective potential contribution:

Veff(θ) =
ρ4

64π2

×
[
(3 · 3)g4

16
sin4 θ ln

(
g2ρ2 sin2 θ

4µ2
L

)

+
(3 · 3)g4

16
cos4 θ ln

(
g2ρ2 cos2 θ

4µ2
R

)
(31)

− 4ρ4
∑

j

α4
j sin4 θ cos4 θ ln

(
α2

jρ
4 sin2 θ cos2 θ

µ2
j

)
 ,

where the sum over j runs over all the known fermions.
The ratio ρ4α4

j/g
4 ≈ (mj/MW (L))4 is very small and neg-

2 The finite contribution may be extracted by the method of
Coleman and Weinberg [11].

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.05  0.1  0.15  0.2

V
ef

f

θ (radiants)

Fig. 1. Finite contributions of zero-point energies to the ef-
fective potential according to (32) of the text. A constant has
been subtracted in order to set Veff(0) = 0, and an arbitrary
scale factor has been inserted. The free parameters aL, aR and b
are taken to be aL = aR = b = 6.5, 8.0, 9.5, 1.1 (going from the
upper to the lower curve respectively). A minimum is present
for a small value of the angle θ which decreases when the free
parameters decrease

ligible for almost all fermions. Only the top quark con-
tributes to Veff which reads

Veff = const.
× [

sin4 θ ln(aL sin2 θ) + + cos4 θ ln(aR cos2 θ)

− ξ sin4 θ cos4 θ ln(b sin2 θ cos2 θ)
]
, (32)

where aL = (gρ/2µL)2, aR = (gρ/2µR)2, b = α2
tρ

4/µ2
t and

ξ =
4

9 cos4 θ0

(
mt

MW (L)

)4

, (33)

with θ0 fixed at the phenomenological value of θ. Inser-
tion of MW (L) = 81.5 GeV, mt = 181 GeV, cos θ0 ≈ 1
yields ξ ≈ 11. The diagram of Veff is reported in Fig. 1 for
aL = aR = b taken in the range from 0.65 (upper curve) to
1.1 (lower curve). This effective potential term breaks the
O(2) invariance, and has an absolute minimum for small
values of θ in a broad range of parameters. Detailed calcu-
lations are called for in order to compare the predictions
of the model with future experimental data on the Higgs
mass.

In summary we have shown that the existence of a
global O(2) symmetry would give a natural path towards
the LR symmetry breaking without requiring complex
Higgs sectors. In its minimal version the model only re-
quires two physical neutral Higgs bosons and predicts a
phenomenology which is undistinguishable from the SM
at the currently reachable energies. Moreover a light Higgs
field is predicted whose mass could be evaluated by stan-
dard perturbative calculations.

Notes added. A recent paper [12] has addressed the prob-
lem of mass generation in the framework of the present
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minimal model. That paper does not deal with the sym-
metry breaking mechanism and barely assumes that the
standard electro-weak phenomenology is recovered in the
low energy limit. We stress that without any Higgs bidou-
blet the only non-trivial broken symmetry vacuum would
be characterized [3] by a vanishing expectation value v = 0
(while w �= 0). Thus any Dirac mass term would be vanish-
ing. Of course soft breaking of symmetry would be a way
out (by insertion of ad hoc mass terms in the lagrangian)
but that could not be regarded as a genuine spontaneous
symmetry breakdown. On the other hand the O(2) sym-
metry discussed in the present paper seems to be a vi-
able way to generate finite fermion masses without Higgs
bidoublets.
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